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Empirical Bayes Rules for Selecting

Good Binomial Populations

1. Introduction

The empirical Bayes approach in statistical decision theory is appropriate
when one is confronted repeatedly and independently with the same decision
problem. In such instances, it is reasonable to formulate the component
problem in the sequence as Bayes decision problems with respect to an unknown
prior distribution on the parameter space and then use the accumulated
observations to improve the decision rule at each stage. This approach is
due to Robbins (1955, 1964). Many such empirical Bayes rules have been
shown to be asymptotically optimal in the sense that the risk for the nth
decision problem converges to the optimal Bayes risk which would have been

obtained if the prior distribution was known and the Bayes rule with respect

to this prior distribution was used.

Empirical Bayes rules have been derived for multiple decision problems
by Deely (1965). He considered selecting a subset containing the best if--4
population. Van Ryzin (1970), Huang (1975), Van Ryzin and Susarla (1977) e
and Singh (1977) also studied some multiple decision problems by using E;;f;\
empirical Bayes approach. Recently, Gupta and Hsiao (1983) studied some
empirical Bayes rules for selecting good populations with respect to a

standard or a control. In their paper, the underlying population Ty is

uniformly distributed with parameter 0, i=0,1,...,k, and = is a contro]——::;;;z:i]
}
t
|

population. my is said to be good if 8; > 6y and to be bad if 8; < 8p-
Let ac{1,...,k} be an action. When action a is taken, it means that my i3

is selected as good if i€a, and excluded as bad if i¢a. With the loss —_

Y )
nilnbility Codes
Avail and/or
*tst | Special
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function L(g,a) = jéa (e0 0. )I(O,eo)(ej) + jéa(ej-eo) I(eo,w)(ej)’ where

8 = (90’61"“’6k)’ they proposed some empirical Bayes rules for the problem of

selecting good populations with respect to a standard or a control.

For a similar problem, if the underlying populations have binomial
distribution, then, in general, it is impossible to find a sequence of
empirical Bayes rules which is asymptotically optimal in the sense mentioned
above (see Robbins (1964), Samuel (1963) and Singh (1977)). In this paper,
we are concerned with this problem. Two cases have been studied: one is
that the prior distribution is completely unknown and the other is that the
prior distribution is symmetrical about p = £ , but its form is still unknown.
In each case, empirical Bayes rules are derived and the rate of convergence
of corresponding empirical Bayes rules is also studied. In each case, it
is found that the order of the rate of convergence is O(exp(-cin)) for some

c; > 0, i = 1,2. For the case when the prior distribution is symmetrical about

0 T N T w—— AR

p=31, in order to improve the performance of the sequence of empirical Bayes
rules, two smoothing methods are studied. Some Monte Carlo studies have
also been carried out. The results indicate that the smoothed competitors

actually perform better than the original empirical Bayes rules.

2. Formulation of the Empirical Bayes Approach

Let Tys Tysees T denote k + 1 populations and let x.i be a random

observation from LIp Assume that X, ~ B(Ni’pi)’ where p; € (0,1) and N; is

fixed and known. Let 7o be the control population. For each i = 1,...,k,

population my is said to be good if P; 2 Py and to be bad if Pj < Py» where Z;;S
the control parameter Po is either known or unknown. Our goal is to derive .;j%
some empirical Bayes rules to select all the good populations and exclude 7%,1
all the bad populations. Ei;i

=
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.
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When the control parameter Po is known, the empirical Bayes framework
can be formulated as follows:

(1) Letgq = {glg = (p],...,pk), P; e(0,1) for 1 = 1,2,...,k}. For each
peQs define A(B) = {1’|p,i Z.Po}’ B(g) = {1‘|pi < po}. That is, A(g)(B(g))
is the set of indices of good (bad) populations.

(2) Let A = {a|la ={1,2,...,k}} be the action space. When action a is
taken, it meéns that population Ty is selected as a good population if
ica, and excluded as a bad population if i¢a.

(3) The loss function L(g,a) is defined as follows:

(pg-pg) + I (pg-ps) (2.1)

L(p,a) =
(8 ) iei(g)-a iea-A(g)

where the first summation is the loss due to not selecting some good
populations and the second summation is the loss due to selecting some

bad populations.

k
(4) Let dG(R) = 1 dGi(pi) be the prior distribution over the parameter
j=

1
space @, where Gi(') are unknown for all i = 1,2,...,k.

(5) For each i, let (Xij’Pij)’ i=1,2,..., be pairs of random variables
associated with population My where xij is observable but Pij is not
observable. Pij has distribution G . Conditional on Pij = Pyje xij

is binomially distributed with parameters Ni and pij‘ Some additional

observations Xij = (Y ) are also available. Conditional on

151> Vijn,
Pij = pij’ Xij and Yi
observations are denoted by %j' That is, éj = ((X]j, x]j),...,

(x

jm* ™= ]""’"i’ are i.i.d. The jth stage

ki Yki))-
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(6) Let X = (X]....,Xk) be the present observation. Conditional on
p = (p],...,pk), X has probability function

fx = n f.(x,|p;) = n p. (1-p. .
MY B i=] 1 1 1 i=] Xi 1 1
Finally, since we are interested in Bayes rule, we can restrict our
attention to the nonrandomized rules.
(7) Let D ={d|d: x - A, being measurable} be the set of nonrandomized

rules, where x =

{0’]""’Ni}’ For each deD, let r(G,d) denote the
i

n=x

1

associated Bayes risk. Then, r(G) = inf r(G,d) is the minimum Bayes risk.
deD

When the control parameter Po is unknown, for the related framework,

the indices in the associated notations should begin at 0 instead of at 1.
In the sequel, (0) will be used to show this additional fact. _'
We now consider decision rules d (é, Byser ook ) whose form depends on —

n ] n -~

X and éj’ j=1,...,n. Let r(G,dn) be the Bayes risk associated with decision

rule dn(é’ %]""’%n)’ That is,

(6dy) = T E [ LRty (s Byoe--ko)) Flxle) d6(R) o
Xex e

where the expectation E is taken with respect to (%1,...,%n). For simplicity,

dn(k’ %1,...,%n) will be denoted by dn(é)'

Definition 2.1. A sequence of decision rules {dn(é)}:=1 is said to be
asymptotically optimal (a.o0.) relative to the prior distribution G if
r(G,dn) +r(G) as n » =,

-------------------------------------

................
LA
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For constructing a sequence of a.0. rules, we first need to find the
minimum Bayes risk and the associated Bayes rule, say dG‘ From (2.1), the

Bayes risk associated with decision rule d is

rd) = 11Ty (g - By) FxIR) d6()
X

Xex ie
(2.2)

k
+ Z L Jo (i - po)T(p, 1) (P)FkIR) d6(p),

xex |

where IA(-) is the indicator function of set A.
The second term in the right-hand side of (2.2) is a constant and does

not affect the determination of the Bayes rule.

Let ¢iG(5) = J‘Q(p0 - pi)f(é|3)dG(2)' After integration, one obtains

k R

J#i 4

-A>.A--.

N . N

where RS
Pof;i(x;) - Wi(xy) if py is known; ;f;:;

ayg(%) = (2.3) i:'i‘.:
wO(XO)fi(Xi) - wi(xi)fo(xo) if py is unknown; 5

;q

1 ;:{_Z

fi(x) = jo fi(x]p) d6, (p) and i-. :
10

1 1 /N, N;-x )

W, (x) = IO pfi(xlp)dGi(P) = IO (x‘)p’m(l-p) L d6, (p). R




] Since fi(x), the marginal probability function of X;o is always positive
for all x = 0,1,...,Ni, i=1(0), 1,...,k, the Bayes rule dG can be obtained

as follows:

dg(x) = {i]asq(x) < 0. (2.4)

Now, for each i = (0), 1,...,k, and for each n = 1,2,..., let

'r‘
ol - . .
win(xi) z Hin(xi’ (Xil,mi]),...,(xin,xin)) be an estimator of Ni(xi) and
fin(xi) = fin(xi; (xi],xi]),...,(xin,xin)) be an estimator of fi(xi)'
| Define
D
Won(%o APRESE Wi (x3)fonlxg)  if p is unknown;
bnlR) = (2.5)
ii pofin(xi) - win(xi) if Po is known; -
Q; and .
= [E——
i -
d(x) = {i]ag,(x) < 0}. (2.6) L
v o
If Wy (x) > W.(x) and f, (x) R fi(x) for all x = 0,1,...,N; where .
" B " means convergence in probability, then 8in %) 4 b;6(x) for all xex. Ejiﬁ
Therefore, from a corollary of Robbins (1964), it follows that r(G,dn) + r(G) ’ Eﬁsﬁ
as n - =. So, the sequence of decision rules {dn(é)} defined in (2.6) is :_'}
asymptotically optimal for our selection problem. Hence, in the following, ;

all we have to do is to find sequences of estimators, say {Nin(x)} and {fin(x)}’

i=(0),1,...,k, satisfying Nin(x) B wi(x) and fin(x) B fi(x) for all x = 0,1,...,N;.




3. Case when the Prior Distribution is Completely Unknown

Robbins (1964) and Samuel (1963), respectively, pointed out that there
was no way of approximating Ni(x) just by using the observations (xil""’xin)'
In order to remedy this deficiency, we take, at each stage, some more observa-

tions (Y ’Y”n.) in our model where n; can be any positive integer.

ij1*eoc i) j
For simplicity, let ng = 1 for all i = (0),1,...,k.

Estimation of W.(x) and f,(x)
A usual estimator of fi(x) can be given as follows:

_1 9 _
fin(x) = 5'321 I{x} (Xij) for x = 0,1,...,N.. (3.1)

1

Then fin(x) is an unbiased estimator of fi(x). and by the strong law of

large numbers, fin(x) -+ fi(x) with probability 1 for each x = 0,1,...,N

.
p -
Hence, fin(X) > fi(X) for a]] X = 0,],-.-,"1.
For the estimation of wi(x), we consider the following. Define

Vij(x) = Yij I{x}(xij)‘ (3.2)
Under the condition (5) of Section 2, it is easy to see that E[Vij(x)] =
Niwi(x)' We then define

;N
”in(x) = ﬁ.jzl Vij(x)/Ni' (3.3)

Since Vij(x), i=1,2,..., are i.i.d. and bound, it is easy to show that

win(x)awi(x) with probability one for all x = 0’]""’Ni'

and dn(é) be defined in (2.5) and (2.6), respectively. From the discussion

Now, let Ain(é)
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ii of Section 2 and the construction of the sequence of decision rules
oF {dn}:=1 through (2.5), (2.6), (3.1) and (3.3), we get the following result.

:; Theorem 3.1. For our decision problem, the sequence of decision rules

ii {dn}:=1 is asymptotically optimal relative to the prior distribution G.
g Rate of Convergence of Empirical Bayes Rules {dn}

@

n=1

Let {an} be a sequence of empirical Bayes rules relative to the

E: prior distribution G. Since the Bayes rule dG achieves the minimum Bayes
risk r(G) relative to G, r(G,Gn) -r(G) > 0 for all n = 1,2,... . Thus, the
nonnegative difference r(G,én) - r(G) is used as a measure of the optimality

of the sequence of empirical Bayes rules {Gn}:=].

Definition 3.1. The sequence of empirical Bayes rules {Gn}:=] is said to
be asymptotically optimal at least of order an relative to G if
a r(G,dn) - r(G) 5_0(a“) as n + = where lim o, = 0.
- o
?E For each 1 = 1,...,k, define S; = {xex|a,c(x) < O}, T, = {xex|a;q(x) > O}
:;‘ Let ¢, = mgn ('Ais(é))’ e, = min (AiG(§)) and ¢ = min(e],ez). Since
XeS; eT,i
" 1ci<k 1<i<k .
x is a finite space, therefore ¢ > 0. Now, Ef;?
. L
0 < r(G,d ) - r(6) o]
Iy
) Dol m ] o T sl 1 fix) B
= E A:alx) m f.(x, - AiplX f.(x. S
xex | |ted (0 I8V 5= 3T qeq () 16 g1 3 ‘
J#i J#i o
k k =
= 12_1 sti (-1 a;6(x)P{a;,(x) > 0 J_I=I1 fj(xj) N
v J#i END
._%
)
-




9
k k
+ 121 §ZT. big(xIPLa; (x) < 0} 551 f5(x;)
! J#i
5 4y () ) ( S
< Pla; (x) > 0} + P{a, (x) < 0} (3.4) S
i=1 éeS. in'% %eT. mat = ,-1‘
i i )
o
where the last inequality is due to the fact that 0 < fj(xj) <1 and R
lAiG(5)| < 1. From (3.4), it suffices to consider the behavior of f',{
. ol
P{Ain(é) > 0} when xeS; and that of P{Ain(é) < 0} when xeT, as n + = for ’ 1
each i = 1,2,...,k. )
For each éesi, ;;

A

P{Ain(%) > 0} P{Ain(é) - AiG(é) > -AiG(é)}

IA
"IA..-‘II.‘A"

P{Ain('{) - AiG(é) > e} 1]

vy

When Po is known,

i ] e
Py __AJ‘.-? PR

PLagn(X) > OF < PLPoFin(xy) = pgfilxg) = Wy (x) + W, (x;) > e}

o

(3.5) 3?;51

R

€ €
< P{fin(xi) - fi(xi) > E} + P{win(x‘i) - wi(x'i) < - ?-}

e
LIPS S

since Po e(0,1).

P S RN
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> 10

':‘z When p, is known,
P{Ain(é) > 0}
< P{NOn(XO)fin(xi) - win(xi)fOn(xo) - wo(xo)fi(xi) + wi(xi)fo(xo) > ¢}

< PUE (k) TG (xg) = Wglxg) T > 3+ PUUGx)IF, (x;) - £,(x)] > )

+

P{fOn(xo)[Nin(xi) - Wi(x;)] < --§} + PO, (x;)[Fg,(xg) - fo(xo)] < - %}

A

€ €
Plign(xg) - Wolxg) > g} + PUFy (x;) - Fi(x;) > 7}

+ PO (x;) - Wilxy) < - %} + P{fo(xg) = Folxg) < - §}. (3.6)

In (3.6), the last inequality is due to the fact that 0 f_wi(xi), fi(xi) <1

and that 0 < W (x;), f; (x;) <1 where the latter can be easily checked

from (3.1), (3.2) and (3.3). 3
(3.5) and (3.6) show that it suffices to consider the behavior of :

PLIF(xg) = F2(x;) | > 6} and PUM, () - Wi(x;)| > 83 for some § > 0. f
From (3.2) and (3.3), W, (x)-W.(x) = ) Aij(x)/n where Aij(x) = s

J=1
Yijl{x}(xij)/Ni'“i(x)' It is easy to see that Aij(x), j=1,...,n, are

i.i.d. with mean 0 and finite variance, say Bi(x), since |A1.J.(x)| < 1. -

Therefore, for m > 2,

ﬁ: ELAY; ()] < ECA; ()] :_EEIAij(X)Iz] = 8j(x) < sylx)mt,




Let Bn(x) = nei(x). Thus, by Bernstein's inequality (see Ibragimov

and Linnik (1971), page 169), for any s > O,
P{|win(x) - ”i(X)I > 8}
n T .1 1
= P{|j£] Aij(x)[ > n®6pi % (x)BE (x)} (3.7)

n 2 1 .1 101
< PUL 2 A5()] > B2 (x) min(3n® 6832 (x), 3n2862 (x)))
3=l

< 2 exp{- % min(dzs;](x), Si(x))}°

n
Similarly, from (3.1), fin(x) - fi(x) = jél Cij(x)/n where Cij(x) =

I{x}(xij) - fi(x). Also, Cij(x), J=1,...on, are i.i.d. with mean 0 and

) ]Cij(x)l < 1 and hence with finite variance, say ai(x). Applying Bernstein's
3 inequality again, we obtain
e v
n o o,.2 -1 '
P{Ifin(x) - f_i(x)l > 8} < 2 exp{- zmm(é o (x), ai(X))}. (3.8) ]
t Thus, we take ¢ = %- if py is unknown or take & = %-if Po is known. Then, o ]
from (3.5) ~ (3.8), for each XeSss !_ R
2 -1 2
P{ajn(x) > 03 < O(exp(- %-min(c ap (x3)s ay(x;))1) O
(3.9) P
+ 0(exp(- 2 min(62871(x,), 8, (x,))}) R
4 i i ’ i 1 : :: -.‘
r
2




_______

Following an argument analogous to the above, we also get the conclusion o

given below:

For each xeT., i = 1,...,k,
LI |

Plagn(x) < 03 < O(expi- § min(sZal'(x,), ~.(x,))1)

(3.10)
+ O(exp(- J min(s%87 (x,), 8;(x:))1).

oA
Now, let c, = %-min(b],bz) where b, = min | min (Gza;](X), as(x)) ] §
mei<k {O<x<N, '
-1
b2 = min min (stgl(x), si(x)) , herem = 1 if Py is known and C
m<i<k O<x<N,
m=0 if p, is unknown. It is clear that c; > 0 since Bi(x) > 0, ]
“i(x) > 0 and x is finite. Thus, we have the following theorem: -3
N
Theorem 3.2. Let {dn}:=l be the sequence of asymptotically optimal rules ZSI;
[ - described in Theorem 3.1. Then, r(G.d,)-r(6) < 0(exp{-c,n})for some c; > 0. e
ﬁﬁi 4. Case when Gi(°) are Symmetrical about p = 1/2 T

In this section, we suppose that there is sufficient information to
tell us that Gi(') are symmetrical about p = 1/2 for all i = (0), 1,....k.

Further, we also assume that N; are even integers for all i = (0), 1,...,k.

Estimation of wi(x) and f.(x)

Under the above assumptions, fi(x) = fi(Ni - x) for all x = 0’]""’Ni'
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| Therefore, it is reasonable to use }:‘
i,
(4 1 N
2n jZ] Loon-apWXig) o forx # 7, L
! RN
] 1 A (4.1) e
{ £l (x) = f, (N.=x) = R
I in in'i ﬁ - Ni ’
‘ ﬁ'jz, Iy (5 for x = &
to estimate fi(x). .

For wi(x), X = 0’]""’Ni we will construct a sequence of consistent

; estimators (W] (x)}, in terms of ] (y), ye{0,1,...,N;}, by using the

i observations (Xij’ j=1,...,n) only. The following lemma is very helpful .
»

‘ for the above purpose.

Lemma 4.1. Suppose that the prior distribution Gi(') is symmetric about
p=1/2. Then

x+1

(a) Wi(x) = N.x Wi(N;-x-1) for each x = 0,1,...,N; - 1. ;
x) = - £ (N.- - b _
(b) wi(x) + “1("1 x) fi(x) fi(Ni x) for each x 0,1,...,N1. I
e, o, (3 o)
(c) Furthermore, if N, is an even integer, then, W, \ 5 )= 5 f\ 5] . -
LI
Proof: Direct computation. 1_;;j
Theorem 4.1, Suppose that Gi(') is symmetric about p = 1/2 and N; is ﬂ;ﬁﬁ
an even integer. Then, for each x = 0,1,...,N;, Ni(x) can be represented r
as a linear function of fi(y), y = 0’1""’Ni' Zjﬁ
! ;
v
-;:;
e e e e T N e e
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Proof: First, from Lemma 4.1 (a) and (b), for each x = 0,1,...,Ni-1, -

= -x) - XL -x-
My (Ngox) = £ 0x) = I (ngexe).

N,
By taking x = L -1+ z and after some simple computation, we have

(Ni ) N+2-2z (N, ) -
3 “i\Z "2 W fi\z -2+

- (4.2)

T

t
doa

“WEm Mi\z ot

B DS

Then, by (4.2), Lemma 4.1(c) and induction, we conclude that for each
N
2
0,

1,'v‘ Y

N
z=1,2,..., s Ni(-él - z) can be represented as a linear function

¥
Ll

of fi(y), ye{ ]""’Ni}‘

DRI \ SRAOKANS

N.
Finally, by Lemma 4.1 (b), we also see that for each x = 3} + 1N,

!i Ni(x) can be represented as a 1inear function of fi(y), ye{O.l,...,Ni}.

P T
R I
BT R ;
. PP A
} A R R ¢
.«
. . .‘;
2 2 4

.
Wl

Hence, the proof of this theorem is completed.

e

¥ RN
v

RIS

- Vot
IR GV G Y ML)

[;' By Theorem 4.1, for each x = 0’]""’Ni’

N

i
() = TN £, (4.3)
y=

oo,
R
B SR

L I S

1
4 s

3

where the coefficients B(Ni,x,y) depend on Ni‘ x and y. Also, the

N

s S

values of B(Ni.x.y) can be obtained from Lemma 4.1 (¢) and the iterative

relation (4.2).
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We then define

N,
w}n(x) = yz; BN, »X,y) f}n(y) (4.4)

where f}n(y) have been defined in (4.1).

Now, define

1 1 1 1 .
Won(Xg) Fin(xq) = Wo (x{)f5,(x5) if py is unknown,
| -
Ain(é) - (4.5)
pOf}n(xi) - N}n(xi) if py is known,

and
dl = il (0 < ob (4.6)

From (4.1), it is clear that f}n(x) - fi(x) with probability 1 as
n + < for each xa{O,l,...,Ni}. Therefore, from (4.3) and (4.4),
w}n(x) > wi(x) with probability 1 as n + = for each xe{O,l,...,Ni}. Thus
we have the following theorem:
Theorem 4.2. Suppose that the prior distributions Gi(') are symmetrical
about p = 1/2 and Ni are even integers for all i = (0),1,...,k. Then, the
sequence of decision rules {dl}:=] is asymptotically optimal relative to
the prior distribution G.

1

Rate of Convergence of Empirical Bayes Rules {dnl

We now consider the rate of convergence of the empirical Bayes rules

{dl}. Following the same discussion as given in (3.4) through (3.6), and

g

]
- -
] -
]
- - -
P
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gi the fact that the estimators {f}n(x)} defined in (4.1) share the same
property as that defined in (3.1), it suffices to consider the behavior

of P{N}n(x) - Ni(x) > 6§} and P{w:n(x) - Ni(x) < -8} as n + = for some
- § > 0, for each xe{0,1,...,N;}, i = (0), 1,....k.
From (4.3) and (4.4), for each xe{o,l,...,Ni},

N
i
PLH] (x) - W.(x) > 6} = P RCOREY (] (y)-F,(y)] > 6

N,
< 1 ptaN ) [F] (0-F, (0] > o
= 1 in i 1
y=0
where &, = N;%T' If 8(N;,x,y) = 0 for some 0 <y < Ny, then

P{B(Ni,x,y)[f}n(y) - fi(y)] > 6]} = 0. So, we assume B(Ni,x,y) # 0. When

B(Ni,x,y) > 0, then

PLBIN; X,y )LF]\(¥)=F4 ()] > 83} = PLFL(¥) - £,(¥) > grroy T

.ID’

- When 8(N;,x,y) < 0, then

P{B(Ni,x,y)[f}n(y) - £,(01> 81 = P{f}n(y) - £5(y) < 8;/8(Nsaxay)) -

In either case, the problem can be reduced to considering the convergence
rate of P{If}n(y) - fi(y)l > 62} as n > = for some §, > 0. Similarly,
for the convergence rate of P{w}n(x) - Ni(x) < -§} where XE{O:],-..,Ni} and

& >0, we also get a similar result. Therefore, by applying Bernstein's

. e
RPN

[ N SR

Dl




: inequality and follcwing an argument similar to that of (3.7), we conclude
ﬁ the following iheorem:

[

1
Theorem 4.3. Let {d '} _,

be the sequence of decision rules defined in (4.6).

Then, {d;}:=] is asymptotically optimal at least of order exp{-czn} relative

to the prior distribution G for some Cy > 0.

! 5. Smooth Empirical Estimation of fi(x) and Wiiél

In this section, we also assume that Gi(') are symmetrical about

p = 1/2 and Ni are even integers for all i = (0), 1,...,k. In Section 4,

e

the marginal frequency functions f.(x), xe{0,1,...,N;}, i = (0), 1,...,k, are
i i

estimated in terms of the empirical frequency functions f}n(x), regardless

of the properties associated with the marginal function fi(x). In this
section, by considering some properties related to fi(x) and wi(x), two
methods for smoothing the estimators f}n(x) and N}n(x) are studied.

We first need the following lemmas.
Lemma 5.1. Suppose that Gi(°) is symmetrical about p = 1/2 and Ni is an

even integer. Then,

(a) (y+1)£;(y+1) < (Ny-y) (y) and (5.1) o
(b) Wi(y) < W;(N;-y) (5.2) ; ;,a

]
for a1l ye{0,1,...,N;/2-1}. -:,:._:-.;_::-::

Lemma 5.1 can be verified by direct computation. We omit the

proof here.

ST
L
ﬁ:ﬁit
RRERAY
AR
F:"'.'T?

>
-
K

Salaa




R AR

18

Lemma 5.2. Let U(x), h(x) be nonnegative functions defined on{0,1,...,N},

where N is an even positive integer, and satisfy

(1) U(x) = X2 U(N-x-1) for all x = 0,1,...,N-1.

(i) U(x) + U(N-x) = h(x) = h(N-x) for all x = 0,1,...,N and

(i11)  U(x) < U(N-x) for all x = 0,1,...,N/2-1.

Then,

(iv) (x+1) h(x+1) < (N-x) h(x) for all x = 0,1,...,N/2-1.

Proof: Note that from (i), (N-x) U(x) = (x+1) U(N-x-1). Then, by (i),

we obtain

(N-x) [h(x) - U(N-x)] = (x+1) [h(x+1) - U(x+1)].
Hence,

(N-x) h(x) = (x+1) h(x+1)
= (N-x) U(N-x) - (x+1) U(x+1)
> (N-x) U(x) - (x+1) U(x+1) (by (iif))
> (N-x) U(x) - (x+1) U(N-x-1) (by (iii))
= (N-x) [U(x) - X U(N-x-1)]

=0 (by (§)).

Hence, the proof of this lemma is completed.
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We note that conditions (i), (ii) and (iv) of Lemma 5.2 do not imply
that U(x) < U(N-x) for all x = 0,1,...,N/2-1. The following example
illustrates this fact.

Example. Take N = 4., Let

u(0) = T%U‘ u(1) = T%U’ U(2) = %%%, u(3) = f%%, u(4) = T%G and
h(0) = 0.1, h(1) = 0.3, h(2) = 0.2, h(3) = 0.3, h(4) = 0.1

Then, conditions (i), (ii) and (9v) are satisfied but U(4) < U(0).

From Lemma 5.1, the inequalities (5.1) and (5.2) are always true for
all y = 0’]""’Ni/2']‘ However, the empirical frequency functions f}n(x)
and the functions N}n(x) do not always satisfy the above inequalities.
Hence, it is reasonable to consider some smoothing of f}n(x) and w}n(x),
which will satisfy the above inequalities. Two smoothing methods, based on
f}n(x) and w}n(x), respectively, are given as follows.

Method 1. Smoothing Based on f}r(x)

Let 4, > 0 (for 8y > 0, 8, is chosen small). Let m; stand for the number
of times the smoothing process is carried out. Algorithmically, first m = 0.

Step 1. my o= m + 1. \

= _.i - = i 1 1
For each y = 0, 1, ..., 5 - 1, let ein(Al’ y) mln(Al, fin(y) + fin (y + 1))2

Check whether (Ni-y)f}n(y) - (y+1)f}n(y+l) - ein(Al’y) » 0 or not. If not,

N,
for y 5_7} -2, let

ain(81s) = L DF] (r1)-(N-y) £) (y)4e (a1, 1 (NgH),

OIS
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B = ) = 00 + sy,

£9.(v41) = £, (N-y-1) = €] (y) - a;,(8,y) and
f?n(x) = f}n(x) forall x #y,y+1, Ni-y-l, N;-y.

Ns
For y = 35 - 1, let

a3a(asy) = LA (1) = (N-y)FL(9) + g (8709 = gﬂ:‘—+z :

f?,,(y) = f?,,(Ni-y) = f}n(y) + Jz a;(ay,¥),

f?n(yﬂ) = f}n(yﬂ) - °1n(A1'y) and

0 1 Ny NN E
fin(x) = fin(") for all x # 5 -1, 3 and 5 +1.

0 0 0 0 ]

Step 2. Let sin(A] ) = m1n(A].fin(y) + fin(y”))' Check whether (Ni-y)fin(y) -
N. N

(P 1)F8(y#1) - € (8109) 2.0 for all y = 0,1,..., 51 - 1 or not.
-

If yes, go to step 3. ENEY
If no, let f}n(x) = f?n(x) for all x = 0.1,...,N1., and go to step 1. - "
N -

0,y . o 0 ) N

Step 3. Define W (x) = yZO B(Ni.x,y)fm(y), X = 0,1,..0,N,50 N
Remark 5.1. (1). We note that when the above smoothing procedure stops, ,
then the smooth estimators f?n(y) have the property that (y+'l)f?n(y+l) < 13:,:2:-:«:
N

(Ni-y)f?n(y) for all y = 0,1,...,-21 - 1. r__j
':‘:‘:\

1Y

033

5
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(2). However, it is possible that the above smoothing procedure never stops.
In this situation, we can set up a maximal smoothing time to stop this
procedure. When this happens, the inequality that (y+1)f?n(y+]) 5_(Ni-y)f?n(y)
for all y = 0,1,...,2} - 1, is not guaranteed.

Based on the smooth estimators f?n(x) and w?n(x), we define decision

rules dg(-), n=1,2,..., as follows:

0 .- A
(W (xg ) FO(x;) = WO (x;)60 (xg) < O} if Py is unknown; .

n (o €0 0 . .
{1|P0fin(xi) - win(xi) < 0} if P0 is known. 5

.0

P

Method 2. Smoothing Based on N} (x) L
Let 2, > 0 (for by > 0, By is chosen small). We start with a variable m, fﬁ};?
which stands for the number of times the smoothing carried. At first m, = 0. :———ﬁ
- -4

Step 1. my, =m, + 1. I
For each y = 0, 1, ..., 7; - 1, Tet &, (85, y) = min(s,, [W%H(Y)+W}n(N1-Y)]/2) =
1

oyl . '_1_'.f:';_ }

and b, (a5, y) = W (y) - W (N, - ¥)D72 + 55 (85, 9). Samm

Check whether W] (N;-y) > w] (y) + s .(a,,y) or not. If not, for y = 0, let :T;ff

intNiY) 2 HjplYh T Sqpl8eY - » fory =0,

oy fﬁf}i

‘ w?n(Ni) = win(Ni) + c(o)bin(Azoo)a !_ »

* _ oyl
wiﬂ(o) = win(o) - d(o)bin(AZ’o)’

)
A-028:2,.°0

[

qu(Ni-]) = Niw;n(o) and

1
R
|
o
)

I
wgn(x) = win(x) for all x # 0, Ni-l, Ny

t
b
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N,
Forliyi-f--l, let

Wi, (Ns-y) = N}n(Ni-y) + c(y)byp(asy),

WE(y) = W3L(y) - d(ydbg{agsy)s

N:-y
WE (N -y-1) = = W¥ (y)
in\iY y+1_ %inVY

A1) = X -
N?n(y N Ni-y+1 w?n(Ni y) and

-yl
N?n(x) = win(x) for all x # y-1, vy, N;-y-1, Ni-y.

N,
Here, c(y) = 2(N;-y+1)/(N;+2), d(y) = 2(y+1)/(N,+2) for y = 0,1,...,—2‘- -1.

Step 2. Let 6$n (Azay) = min(Az,[N$n(y) + k?n(ﬁ1-y)]/2). Cneck whether

N,

= i
WE (v} + 6% (a5) < W (N.-y) for all y = 0,1,..., 5 - 1 or not.
If yes, go to step 3.

If no, let w}n(x) = N;n(x) for all x = 0’]""’Ni and go to step 1.

Step 3. Let f¥n(Y) = H;n(y) + N?n(Ni'y) for all y = 0,1,...,Ni.

Remark 5.2. (1) We note that when the above smoothing procedure stops,

then the smooth estimators N?n(y) satisfy that w?n(y) 5_W$n(Ni-y) for
N

= i- =—L‘I ol - = -
all y 0’]""’7T' 1, N?n(y) Ni'y N‘,".‘n(N1 y-1) for all y 0,],...,N_i 1
and H?n(y) + N?n(Ni-y) = f$n(Y) = f;n(Ni-y) for all y = 0,1,...,N§. Then
by Lemma 5.2, (y+1)f?n(y+l)§_(Ni-y)f¥n(y) for all y = 0,1,...,7} - 1.

Therefore, method 2 is better than method 1 in this sense.
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(2) It is also possible that the above smoothing procedure never stops.
Hence, we can set up a maximal smoothing time to stop this procedure.
When this happens, for the smooth estimators, the inequality properties
of (5.1) and (5.2) are not guaranteed.

Based on the smooth estimators fgn(x) and w?n(x), we define decision

rules d;(.), n=1,2,..., as follows:

. {ilwﬁn(xo)fgn(xi) - w;n(xi)fﬁn(xo) < 0} if py is unknown,
dr(x) =
LilPgfe (x;) - W (x,) < O} if py is known.

6. Monte Carlo Studies

For the sequence of decision rules {Sn(x)}:=], the conditional Bayes
N

risk at stage n + 1 given (51,...,§n) is

R(G,8,) = IQXEX L(ps8,(x)) flxlp) dG(p).
n
To measure the performance of the sequence of decision rules {5n(é)}:=],
computing the overall risk r(G,Gn) = ER(G,dn) is needed, where the expectation
E is taken with respect to (xl,...,én). For the small sample situation, it is
impossible to analytically determine such values. Therefore, Monte Carlo
simulation is employed.

In this section, we have carried out some Monte Carlo studies to see

the performance of the sequences of decision rules {dl}, {dg} and {d;}. We
let, conditional on p,, X; ™ B(Ni’pi) where N, are even integers for i = 0, 1

and Po is treated as unknown. We also assume that

............
.......

......................
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.‘ p T(20;%2) a. as B

{ 6(p) = | ——y (1) 'y, i=0,0. .
- Hence, the Bayes rule dG is: "
) Xgtagtl Xytaq ] ]

Select my @s good if NF2s 32 S N+0a.42 °
0 "0 171

. X
A random sample of size 50 was generated by computing from a population oy
having fi(x) (i=0,1) as probability function. For each n = 1,2,...,50, ’ ]
the conditional Bayes ricks R(G,d;), R(G,dg) and R(G,dﬁ) were calculated. -

One hundred repetitions were performed. Estimates of the overall risks
r(G,d;), r(G,dg) and r(G,d:) were obtained by averaging the associated

conditional Bayes risks and the standard deviations of the estimated

overall risks were also obtained based on these repeated samples. ~_?

In Tables 1-4, we consider the combinations of different Ni's and ;fé
ai'S values for our decision problem. We let ;(G,sn) denote the average _::
of 100 R(G,dn) values obtained from simulation. The standard deviation ) ﬁ
associated with ;(G,an) is given in the corresponding parentheses. It is Efj
easy to see that the performances of the sequences of decision rules {dg} f}i
and {dz} are always better than that of {dl}, for the cases that Co]
(Ngs Ny» ags a7) = (2,2,4,8) and (Ng,Nqsagsaq) = (2,2,6,6), both of them 5
have the same performance. For the other (NO,N],ao,a])'S, the performance .
of {d*} is always better than that of {d0).

It is also interesting to note that in most cases, ;(G,d;) has the

,,.. . .
- e PRI N
RN P TN NI

smallest standard deviation while ;(G,dl) has the largest standard deviation.
This fact indicates that the behavior of the sequence of decision rules {d;} -

is more stable than the others.
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TABLE 1

Simulation results for the comparative performance of sequences
of empirical Bayes rules {dg}. {dg} and {d;}.

(No, Nis ags ag) = (2, 2, 4, 8), r{G) = 0.05287

n r(G, d) r(6, d9) r(G, d*)
1 0.08936 0.06299 0.06299
(0.00118) (0.00073) (0.00073)
2 0.08426 0.05907 0.05907
(0.00171) (0.00062) (0.00062)
3 0.09188 0.05638 0.05638
(0.00213) (0.00053) (0.00053) S
5 0.08745 0.05452 0.05452 "
(0.00227) (0.00038) (0.00038) -
10 0.08299 0.05298 0.05298 L
(0.00222) (0.00010) (0.00010) L
15 0.07893 0.05287 0.05287 L.
(0.00251) (0.00000) (0.00000) L]
20 0.07767 0.05287 0.05287 3
(0.00243) (0.00000) (0.00000) ;~:;:
25 0.07849 0.05287 0.05287 N
(0.00234) (0.00000) (0.00000) e
30 0.07481 0.05237 0.05287
(0.00212) (0.00000) (0.00000) g
35 0.07328 0.05287 0.05287 0
(0.00215) (0.00000) (0.00000) ]
40 0.07215 0.05287 0.05287 T
(0.00203) (0.00000) (0.00000) R
45 0.07200 0.05287 0.05287 ) E
(0.00213) (0.00000) (0.00000) IR
50 0.07157 0.05287 0.05287 S
(0.00212) (0.00000) (0.00000) i
b
..
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1 TABLE 2
Simulation results for the comparative performance of sequences
of empirical Bayes rules {d’l'}. {dg} and {d;}.
B (Ngs Ny» ag» ay) = (2, 2, 6, 6), 1G) = 0.0489%
: n r(G, dl) r(6, d) r(G, d¥)
. 1 0.07640 0.05626 0.05626
F:; (0.00089) (0.00056) (0.00056)
t 2 0.07188 0.05284 0.05284
: (0.00126) (0.00043) (0.00043)
' 3 0.07577 0.05121 0.05121
4 (0.00160) (0.00038) (0.00038)
B 5 0.07272 0.04965 0.04965
&= (0.00175) (0.00022) (0.00022)
- 10 0.07098 0.04896 0.04896
Pii (0.00164) (0.00000) (0.00000)
- 15 0.07111 0.04896 0.04896
S (0.00189) (0.00000) (0.00000)
% 20 0.07090 0.04896 (0.04896)
#ii (0.00173) (0.00000) (0.00000)
. 25 0.06931 0.04896 (0.04896)
- (0.00185) (0.00000) (0.00000)
0.06904 0.04896 0.04896
(0.00176) (0.00000) (0.00000)
0.06938 0.04896 0.04896
(0.00181) (0.00000) (0.00000)
0.06855 0.04896 0.04896
(0.00171) (0.00000) (0.00000)
0.06860 0.04896 0.04896
(0.00169) (0.00000) (0.00000)
0.06681 0.04896 0.04896
(0.00169) (0.00000) (0.00000)

............

..........
...........................
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of empirical Bayes rules {dz}. {dg} and {d;}.

(Ngs» Nys gy @) = (4, 4, 4, 4), r(G) = 0.04114
0* "1* %0* %

Simulation results for the comparative performance of sequences

n r6, d) r6, &) MG, d¥)

1 0.08641 0.07389 0.06350

(0.00030) (0.00123) (0.00123)

. 2 0.09043 0.06071 0.05480
(0.00168) (0.00164) (0.00116)

. 3 0.08626 0.06396 0.05026
- (0.00069) (0.00131) (0.00092)
ﬁ, 5 0.08595 0.05851 0.04613
~ (0.00174) (0.00156) (0.00069)
0.08479 0.05546 0.04274

(0.00145) (0.00147) (0.00035)

0.07992 0.05596 0.04189

(0.00161) (0.00147) (0.00016)

0.07994 0.05536 0.04148

(0.00156) (0.00145) (0.00010)

0.07514 0.05358 0.04155

(0.00185) (0.00133) (0.00011)

0.07674 0.05446 0.04144

(0.00157) (0.00141) (0.00011)

0.07458 0.05449 0.04144

(0.00156) (0.00139) (0.00010)

0.07024 0.05312 0.04168

(0.00158) (0.00130) (0.00013)

0.06855 0.05267 0.04158

(0.00145) (0.00126) (0.00013)

0.06749 0.05187 0.04158

(0.00152) (0.00119) (0.00012)

..............................

......................................

..............

..........
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l TABLE 4

Simulation results for the comparative performance of sequences
of empirical Bayes rules {d,I‘}. {dg} and {d;}.

(NO. Nl’ ags al) = (4, 4, 6, 6), r{(G) = 0.03970

n r(G, d) r(G, &) G, d*) |
1 0.07415 0.06354 0.05607 -
~ (0.00020) (0.00088) (0.00087) '
- 2 0.07609 0.05526 0.04950
(0.00117) (0.00119) (0.00073)
3 0.07333 0.05737 0.04669 .
(0.00057) (0.00108) (0.00066) :
5 0.07158 0.05513 0.04275 =
(0.00110) (0.00108) (0.00051) -
10 0.07102 0.05097 0.04079 .
(0.00132) (0.00103) (0.00024) —
15 0.06987 0.05202 0.04006 -
- (0.00102) (0.00106) (0.00009)
= 20 0.06907 0.05035 0.04001
> (0.00122) (0.00105) (0.00009) _
Fi 25 0.06632 0.04973 0.04004 :
= (0.00121) (0.00100) (0.00010) o
o 30 0.06748 0.05067 0.04004
% (0.00118) (0.00099) (0.00010)
X 35 0.06669 0.05024 0.03997
F’A (0.00136) (0.00101) (0.00009)
- 40 0.06712 0.05034 0.04004
- (0.00118) (0.00098) (0.00009)
- 45 0.06626 0.05110 0.03987
F‘- (0.00129) (0.00101) (0.00006)
5 0.06373 0.05042 0.03992
(0.00126) (0.00102) (0.00008)
----- f-<:»»~~csgrfﬁgewb}éﬁféﬁfﬂtﬁgﬁﬁki??*FF?F4¥E¥33fLx
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